Nilai lim_(x→-4)⁡ (1-cos⁡(x+4))/((x^2+8x+16))=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to -4} \ \frac{1-\cos(x+4)}{x^2+8x+16} = \cdots \)

  1. \( -2 \)
  2. \( -\frac{1}{2} \)
  3. \( \frac{1}{3} \)
  4. \( \frac{1}{2} \)
  5. \( 2 \)

(UM UGM 2017)

Pembahasan:

\begin{aligned} \lim_{x \to -4} \ \frac{1-\cos(x+4)}{x^2+8x+16} &= \lim_{x \to -4} \ \frac{2\sin^2 \frac{1}{2}(x+4)}{(x+4)(x+4)} \\[8pt] &= 2 \cdot \lim_{x \to -4} \ \frac{\sin \frac{1}{2}(x+4)}{(x+4)} \cdot \lim_{x \to -4} \ \frac{\sin \frac{1}{2}(x+4)}{(x+4)} \\[8pt] &= 2 \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \end{aligned}

Jawaban D.